Chaos in disordered nonlinear lattices

Haris Skokos

Physics Department, Aristotle University of Thessaloniki Thessaloniki, Greece

> E-mail: hskokos@auth.gr URL: http://users.auth.gr/hskokos/

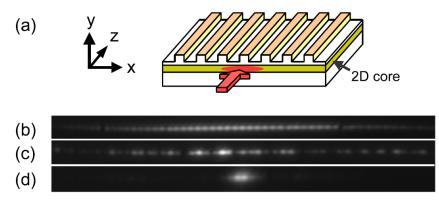
Work in collaboration with Ioannis Gkolias, George Voyatzis, Sergej Flach, Joshua Bodyfelt, Tanya Laptyeva, Dima Krimer, Stavros Komineas

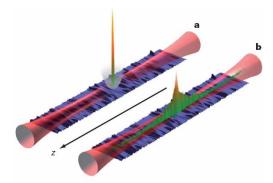
Outline

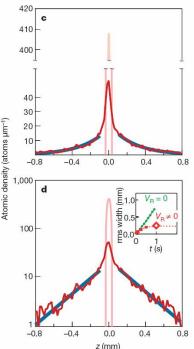
- Dynamical Systems:
 - ✓ The quartic Klein-Gordon (KG) disordered lattice

 The disordered nonlinear Schrödinger equation (DNLS)

- Numerical methods
- Different dynamical behaviors
 - ✓ Single site excitations
 - ✓ Block excitations
- Summary


Interplay of disorder and nonlinearity


Waves in disordered media – Anderson localization [Anderson, Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)].


Waves in nonlinear disordered media – localization or delocalization?

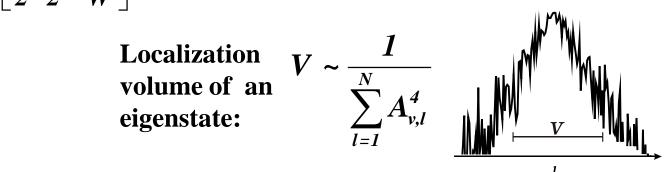
Theoretical and/or numerical studies [Shepelyansky, PRL (1993) – Molina, PRB (1998) – Pikovsky & Shepelyansky, PRL (2008) – Kopidakis et al. PRL (2008)]

Experiments: propagation of light in disordered 1d waveguide lattices [Lahini et al., PRL (2008)].

The Klein – Gordon (KG) model

$$H_{K} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$. Typically N=1000. Parameters: W and the total energy E. $\tilde{\varepsilon}_l$ chosen uniformly from $\left[\frac{1}{2}, \frac{3}{2}\right]$.


The discrete nonlinear Schrödinger (DNLS) equation $H_{D} = \sum_{l=1}^{N} \varepsilon_{l} |\psi_{l}|^{2} + \frac{\beta}{2} |\psi_{l}|^{4} - (\psi_{l+1}\psi_{l}^{*} + \psi_{l+1}^{*}\psi_{l})^{2}, \quad \psi_{l} = \frac{1}{\sqrt{2}} (q_{l} + ip_{l})$ where ε_{l} chosen uniformly from $\left[-\frac{W}{2}, \frac{W}{2}\right]$ and β is the

nonlinear parameter.

H. Skokos

Scales Linear case: $\omega_v^2 \in \left[\frac{1}{2}, \frac{3}{2} + \frac{4}{W}\right]$, width of the squared frequency spectrum:

 $\Delta_{K} = 1 + \frac{4}{W}$ $(\Delta_{D} = W + 4)$

Average spacing of squared eigenfrequencies of NMs within the range of a localization volume: $d_K \approx \frac{\Delta_K}{V}$

Nonlinearity induced squared frequency shift of a single site oscillator

$$\delta_{l} = \frac{3E_{l}}{2\tilde{\varepsilon}_{l}} \propto E \qquad (\delta_{l} = \beta |\psi_{l}|^{2})$$

The relation of the two scales $d_K \leq \Delta_K$ with the nonlinear frequency shift δ_l determines the packet evolution.

H. Skokos

Distribution characterization

We consider normalized energy distributions in normal mode (NM) space $z_v \equiv \frac{E_v}{\sum_m E_m}$ with $E_v = \frac{1}{2} \left(\dot{A}_v^2 + \omega_v^2 A_v^2 \right)$, where A_v is the amplitude

of the vth NM.

Second moment:
$$m_2 = \sum_{\nu=1}^{N} (\nu - \overline{\nu})^2 z_{\nu}$$
 with $\overline{\nu} = \sum_{\nu=1}^{N} \nu z_{\nu}$

Participation number: $P = \frac{1}{\sum_{\nu=1}^{N} z_{\nu}^2}$

measures the number of stronger excited modes in z_v . Single mode P=1, equipartition of energy P=N.

H. Skokos

Lyapunov Exponents

Roughly speaking, the Lyapunov exponents of a given orbit characterize the mean exponential rate of divergence of trajectories surrounding it [see e.g. Ch.S., LNP, (2010)].

Consider an orbit in the 2N-dimensional phase space with initial condition x(0) and an initial deviation vector from it **v(0).** Then the mean exponential rate of divergence is:

$$\sigma(\mathbf{x}(0), \mathbf{v}(0)) = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\|\mathbf{v}(t)\|}{\|\mathbf{v}(0)\|}$$

 $\sigma_1 = 0 \rightarrow \text{Regular motion}$ $\sigma_1 \neq 0 \rightarrow \text{Chaotic motion}$

"Complex Matter" Third Plenary Meeting Manchester, 30 March 2012

8 July 2011

Computational methods

Consider an N degree of freedom autonomous Hamiltonian systems of the $H(\vec{q}, \vec{p}) = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + V(\vec{q})$ form:

As an example, we take the Hénon-Heiles system:

$$H_2 = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$$

Hamilton equations of motion:

Variational equations:

$$2^{(i)} = y_{x}$$

$$j = p_{y}$$

$$\dot{p}_{x} = -x - 2xy$$

$$\dot{p}_{y} = y^{2} - x^{2} - y$$

$$\begin{cases} \dot{\delta x} = \delta p_{x} \\ \dot{\delta y} = \delta p_{y} \\ \dot{\delta p}_{x} = -(1 + 2y)\delta x - 2x\delta y$$

$$\dot{\delta p}_{y} = -2x\delta x + (-1 + 2y)\delta y$$

H. Skokos

Symplectic integration schemes

If the Hamiltonian H can be split into two integrable parts as H=A+B, a symplectic scheme for integrating the equations of motion from time t to time t+ τ consists of approximating the operator $e^{\tau L_H}$, i.e. the solution of Hamilton equations of motion, by

$$e^{\tau L_{H}} = e^{\tau (L_{A} + L_{B})} \approx \prod_{i=1}^{J} e^{c_{i} \tau L_{A}} e^{d_{i} \tau L_{B}}$$

for appropriate values of constants c_i, d_i.

So the dynamics over an integration time step τ is described by a series of successive acts of Hamiltonians A and B.

We consider a particular symplectic integrator [Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)].

$$SABA_{2} = e^{\left[\frac{(3-\sqrt{3})}{6}\tau\right]L_{A}} e^{\frac{\tau}{2}L_{B}} e^{\frac{\sqrt{3}\tau}{3}L_{A}} e^{\frac{\tau}{2}L_{B}} e^{\left[\frac{(3-\sqrt{3})}{6}\tau\right]L_{A}}$$

H. Skokos

Tangent Map (TM) Method

We use symplectic integration schemes for the integrating the equations of motion AND THE VARIATIONAL EQUATIONS. The Hénon-Heiles system can be split as:

$$A = \frac{1}{2}(p_x^2 + p_y^2), \qquad B = \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3,$$

The system of the Hamilton equations of motion and the variational equations is split into two integrable systems which correspond to Hamiltonians A and B.

$$\begin{split} \dot{x} &= p_{x} \\ \dot{y} &= p_{y} \\ \dot{p}_{x} &= -x - 2xy \\ \dot{p}_{y} &= y^{2} - x^{2} - y \end{split} e^{\tau L_{AV}} : \begin{cases} x' &= x + p_{x}\tau \\ y' &= y + p_{y}\tau \\ px' &= p_{x} \\ py' &= p_{y} \\ \delta x' &= \delta x + \delta p_{x}\tau \\ \delta y' &= \delta y + \delta p_{y}\tau \\ \delta p'_{x} &= \delta p_{x} \\ \delta p'_{y} &= \delta p_{y} \end{cases} e^{\tau L_{BV}} : \begin{cases} x' &= x \\ y' &= y \\ \delta y' &= \delta p_{x} \\ \delta p'_{y} &= \delta p_{y} \end{cases} e^{\tau L_{BV}} : \begin{cases} x' &= x \\ y' &= y \\ p'_{x} &= p_{x} - x(1 + 2y)\tau \\ p'_{y} &= p_{y} + (y^{2} - x^{2} - y)\tau \\ \delta x' &= \delta x \\ \delta y' &= \delta x \\ \delta y' &= \delta y \\ \delta y' &=$$

H. Skokos

Tangent Map (TM) Method

So any symplectic integration scheme used for solving the Hamilton equations of motion, which involves the act of Hamiltonians A and B, can be extended in order to integrate simultaneously the variational equations [Ch. S. & Gerlach, PRE (2010) – Gerlach & Ch.S., Discr. Cont. Dyn. Sys. (2011), Gerlach , Eggl, Ch.S., IJBC (2012)]. ($x' = x + p_x \tau$

$$e^{\tau L_{A}} : \begin{cases} x' = x + p_{x}\tau \\ y' = y + p_{y}\tau \\ p'_{x} = p_{x} \\ p'_{y} = p_{y} \end{cases} e^{\tau L_{AV}} : \begin{cases} y' = y + p_{y}\tau \\ px' = p_{x} \\ py' = p_{y} \\ \delta x' = \delta x + \delta p_{x}\tau \\ \delta y' = \delta y + \delta p_{y}\tau \\ \delta p'_{x} = \delta p_{x} \\ \delta p'_{u} = \delta p_{u} \end{cases}$$
$$e^{\tau L_{BV}} : \begin{cases} x' = x \\ y' = y \\ p'_{x} = p_{x} - x(1 + 2y)\tau \\ p'_{y} = p_{y} + (y^{2} - x^{2} - y)\tau \end{cases} e^{\tau L_{BV}} : \begin{cases} x' = x \\ y' = y \\ p'_{x} = p_{x} - x(1 + 2y)\tau \\ \delta x' = \delta x \\ \delta y' = \delta y \\ \delta p'_{y} = \delta p_{y} - [(1 + 2y)\delta x + 2x\delta y]\tau \\ \delta p'_{y} = \delta p_{y} + [-2x\delta x + (-1 + 2y)\delta y]\tau \end{cases}$$

H. Skokos

Symplectic Integrator SABA₂C

The integrator

$$SABA_{2} = e^{\left[\frac{(3-\sqrt{3})}{6}\tau\right]L_{A}} e^{\frac{\tau}{2}L_{B}} e^{\frac{\sqrt{3}\tau}{3}L_{A}} e^{\frac{\tau}{2}L_{B}} e^{\left[\frac{(3-\sqrt{3})}{6}\tau\right]L_{A}}$$

has only small positive steps and its error is of order $O(\tau^2)$.

In the case where *A* is quadratic in the momenta and *B* depends only on the positions the method can be improved by introducing a corrector *C*, having a small negative step:

$$e^{-\tau^3 \frac{c}{2} L_{\{\{A,B\},B\}}}$$

with $c = \frac{2 - \sqrt{3}}{24}$.

Thus the full integrator scheme becomes: $SABAC_2 = C (SABA_2) C$ and its error is of order $O(\tau^4)$.

H. Skokos

Symplectic Integrator SABA₂C for the KG system

We apply the SABAC₂ integrator scheme to the KG Hamiltonian by using the splitting:

$$A = \sum_{l=1}^{N} \frac{p_l^2}{2}$$
$$B = \sum_{l=1}^{N} \frac{\tilde{\varepsilon}_l}{2} u_l^2 + \frac{1}{4} u_l^4 + \frac{1}{2W} (u_{l+1} - u_l)^2$$

with a corrector term which corresponds to the Hamiltonian function:

$$C = \left\{ \left\{ A, B \right\}, B \right\} = \sum_{l=1}^{N} \left[u_{l} (\tilde{\varepsilon}_{l} + u_{l}^{2}) - \frac{1}{W} (u_{l-1} + u_{l+1} - 2u_{l}) \right]^{2}.$$

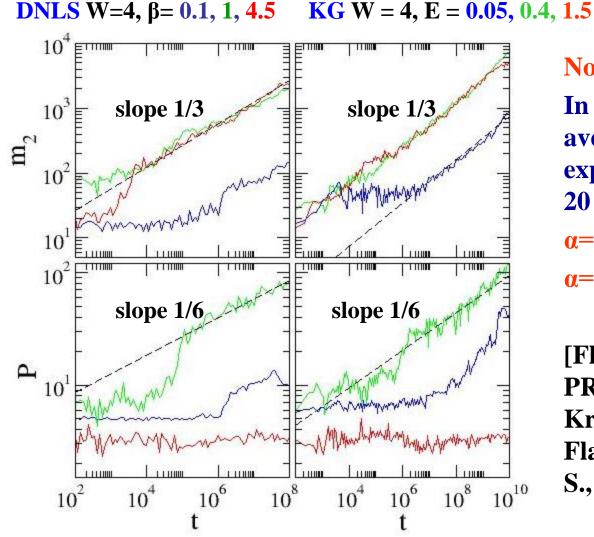
H. Skokos

Different Dynamical Regimes

Three expected evolution regimes [Flach, Chem. Phys (2010) - Ch.S., Flach, PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE(2011)]:

Weak Chaos Regime: $\delta < d$, $m_2 \sim t^{1/3}$

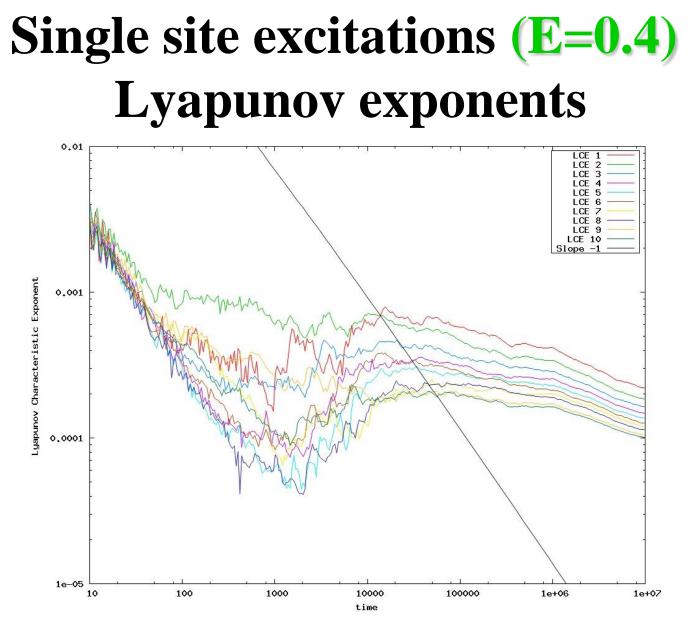
Frequency shift is less than the average spacing of interacting modes. NMs are weakly interacting with each other. [Molina PRB (1998) – Pikovsky, Shepelyansky, PRL (2008)].


Intermediate Strong Chaos Regime: $d < \delta < \Delta$, $m_2 \sim t^{1/2} \longrightarrow m_2 \sim t^{1/3}$

Almost all NMs in the packet are resonantly interacting. Wave packets initially spread faster and eventually enter the weak chaos regime.

Selftrapping Regime: δ>Δ

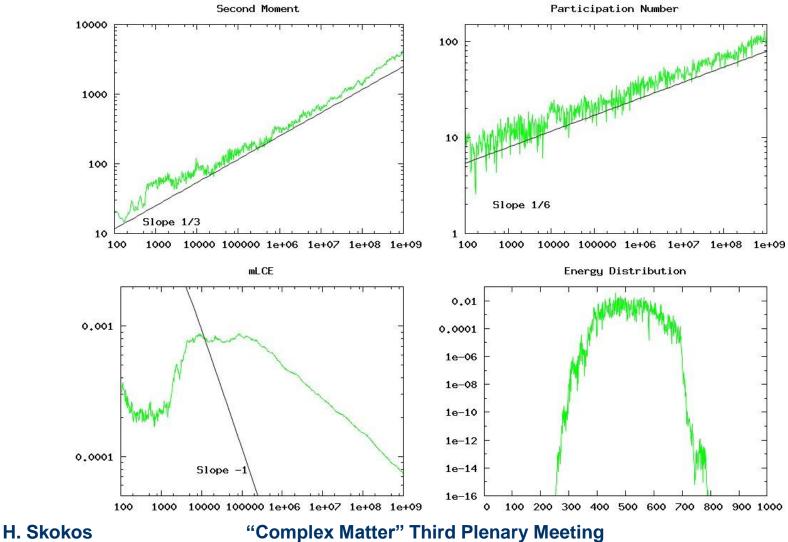
Frequency shift exceeds the spectrum width. Frequencies of excited NMs are tuned out of resonances with the nonexcited ones, leading to selftrapping, while a small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].


Single site excitations

No strong chaos regime In weak chaos regime we averaged the measured exponent α (m₂~t^{α}) over 20 realizations: α =0.33±0.05 (KG) α =0.33±0.02 (DLNS)

[Flach, Krimer, Ch. S., PRL (2009) – Ch. S., Krimer, Komineas, Flach, PRE (2009) – Ch. S., Flach, PRE (2010)]

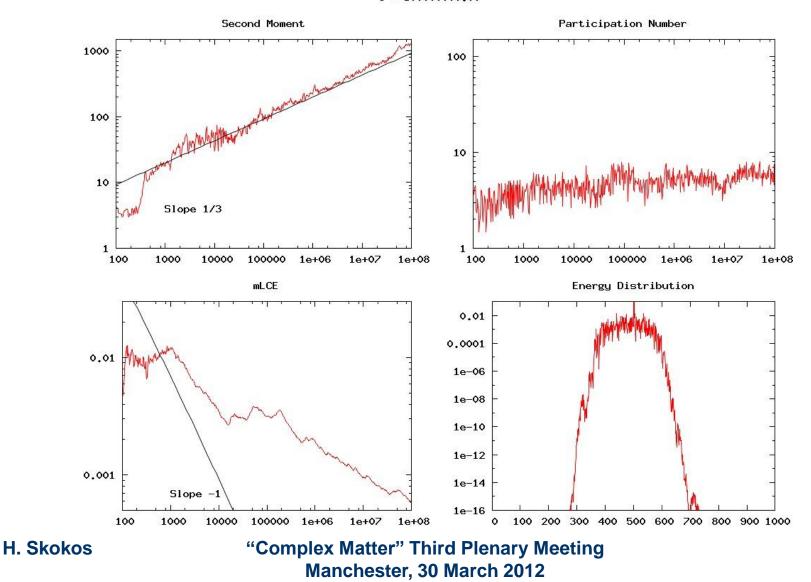
H. Skokos

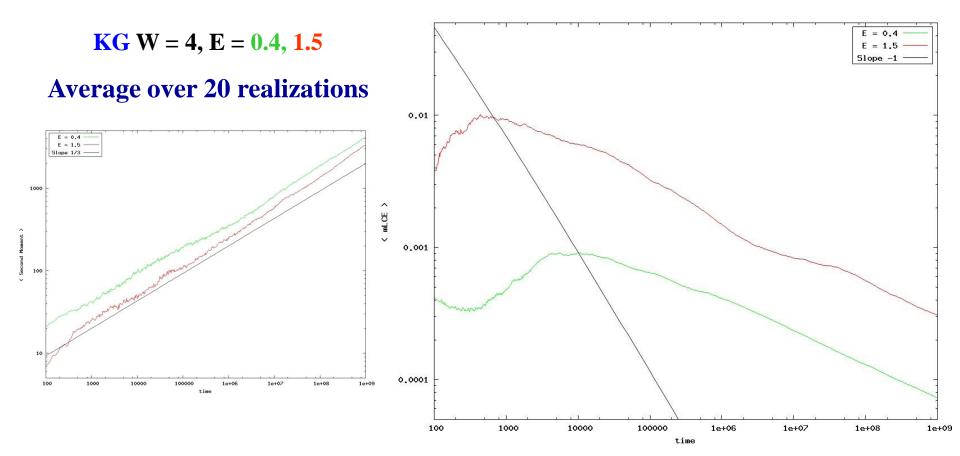


H. Skokos

"Complex Matter" Third Plenary Meeting Manchester, 30 March 2012

KG: Weak Chaos (E=0.4)

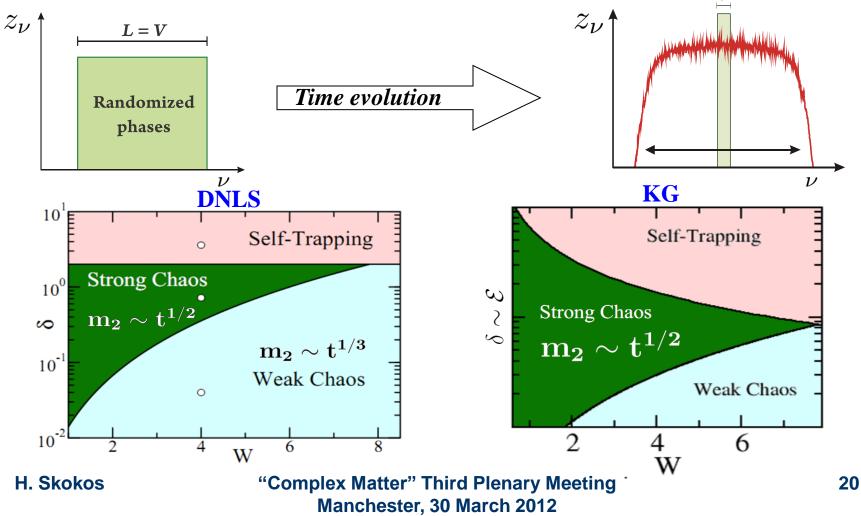

t = 100000000.00


Manchester, 30 March 2012

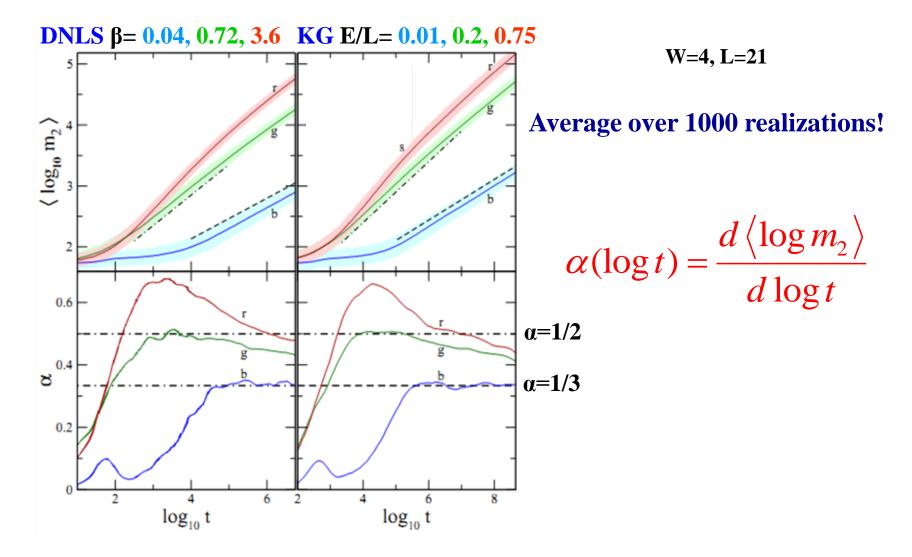
KG: Selftrapping (E=1.5)

t = 10000000.00

Single site excitations: Different spreading regimes



H. Skokos


"Complex Matter" Third Plenary Meeting Manchester, 30 March 2012 19

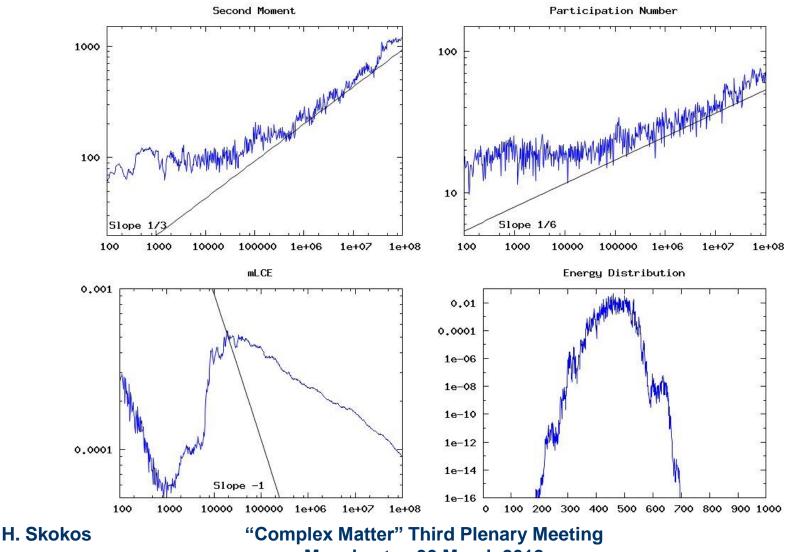
Crossover from strong to weak chaos

We consider compact initial wave packets of width *L=V* [Laptyeva, Bodyfelt, Krimer, Ch. S., Flach, EPL (2010) – Bodyfelt, Laptyeva, Ch. S., Krimer, Flach, PRE (2011)]

Crossover from strong to weak chaos

H. Skokos

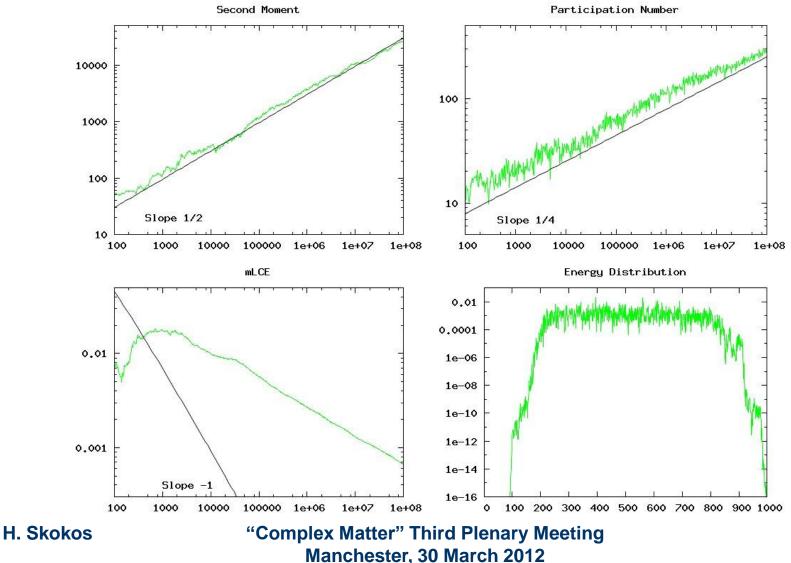
Block excitations (E/L=0.2) Lyapunov exponents



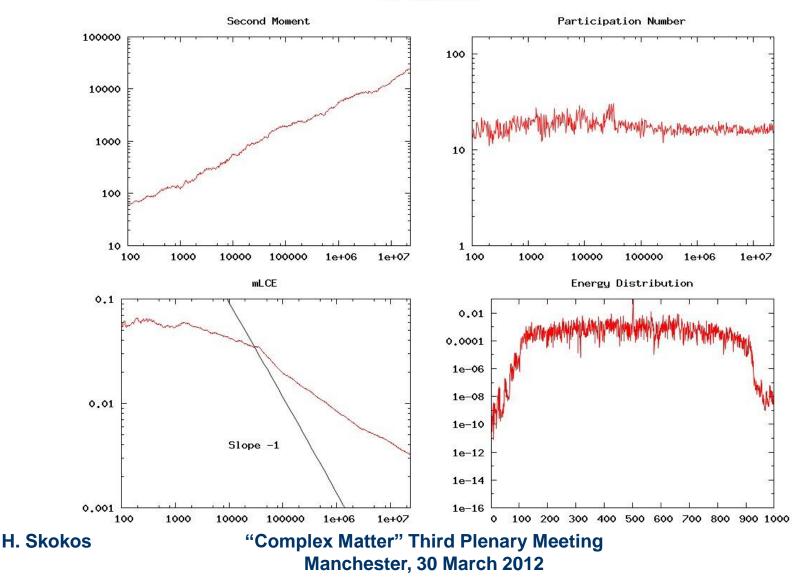
H. Skokos

"Complex Matter" Third Plenary Meeting Manchester, 30 March 2012

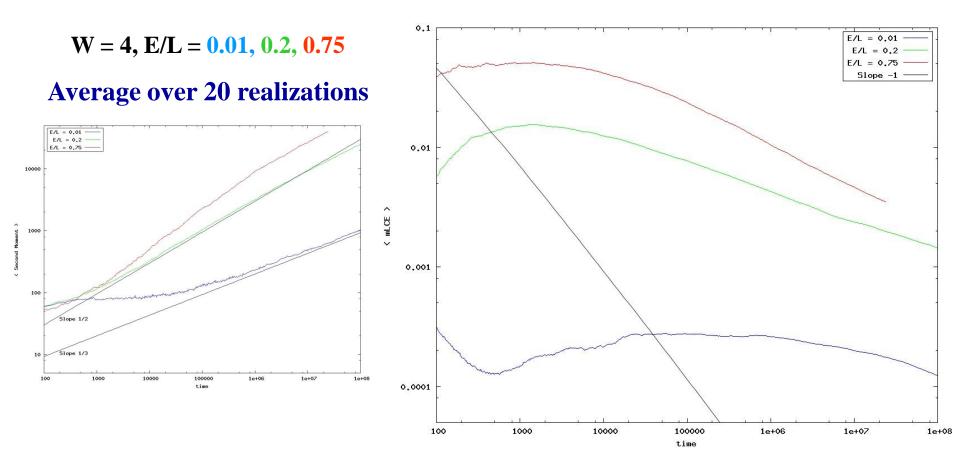
KG: Weak Chaos (E/L=0.01)


t = 10000000.00

Manchester, 30 March 2012


KG: Strong Chaos (E/L=0.2)

t = 10000000.00



KG: Selftrapping (E/L=0.75)

t = 23316754.35

Block excitations: Different spreading regimes

H. Skokos

"Complex Matter" Third Plenary Meeting Manchester, 30 March 2012

26

• We predicted theoretically and verified numerically the existence of three different dynamical behaviors:

✓ Weak Chaos Regime: $\delta < d$, $m_2 \sim t^{1/3}$

- ✓ Intermediate Strong Chaos Regime: d< δ < Δ , m₂~t^{1/2} → m₂~t^{1/3}
- ✓ Selftrapping Regime: $\delta > \Delta$
- Generality of results: a) Two different models: KD and DNLS,
 b) Predictions made for DNLS are verified for both models.
- Our results suggest that Anderson localization is eventually destroyed by the slightest amount of nonlinearity, since spreading does not show any sign of slowing down.
- Questions under investigation:
 - ✓ What is the actual chaotic nature of spreading?
 - ✓ What is the final fate of the wave packet?
 - H. Skokos